

ELIZADE UNIVERSITY ILARA-MOKIN, ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd **SEMESTER EXAMINATION** 2017 / 2018 **ACADEMIC SESSION**

COURSE CODE: MTH 208

COURSE TITLE: Introduction to Numerical Analysis

COURSE LEADER: Dr. I. Olopade

DURATION: 2 Hours

HOD's SIGNATURE

Ofeler

INSTRUCTION:

Candidates should answer any FOUR (4) Questions.

Evaluate
$$\int_0^6 \frac{dx}{1+x^2}$$
 by using

(i) Trapezoidal Rule, when n=6

5 marks

 $\frac{1}{2}$

Simpson's ³ Rule, when n=6

5 marks

(iii) Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up with 9999cm and 9cm respectively. If the true values are 10000cm and 10cm respectively. Compute the true error the true percentage relative error for each case.

5 marks

2 (a) Solve the following equations using Gauss-Seidel iteration method

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

8 marks

(b) Apply Gauss elimination method to solve the equations x + 4y - z = -5x + y - 6z = -123x - y - z = 47 marks **3** Solve the following equations: 3x + y + 2z = 32x - 3y - z = -3x + 2y + z = 4By using: (a) Crammer's rule method 5 marks (b) Matrix inverse method 10 marks 4. Using Runge-Kutta method of fourth order to solve dxWith y (0) = 1 at x=0.2, and 0.4 15 marks **5** (a) Complete the table below; $y(x) = \sqrt{x^2}$ 1.00 1.05 1.10 1.15 1.20 1.25 1.30 2 marks (b) From the table above compute: $\frac{1}{dx}$ Using forward differencing method (i) 2 marks \overline{dx} Using backward differencing method (ii) 2 marks dx Using central differencing method (iii) 2 marks Using second derivative method (iv) 5 marks Given that $y(x) = \sqrt{x^2}$ (c) Find dx2 marks 6 (a) Given the values Х 2 3

12 8 29

Use the Lagrange's method to determine y at x=1 (b) Solve the following equations using Jacobi's iteration method

20x + y - 2z = 17

3x + 20y - z = -18

2x - 3y + 20z = 25

9 marks

6 marks